Electricity and Magnetism, Exam 1, 22/02/2019

11 questions, 5 points each

Write your name and student number on the answer sheet. Use of a calculator is allowed. You may make use of the provided formula sheet. The same notation is used as in the book, i.e. a bold-face \mathbf{A} is a vector, $\hat{\mathbf{x}}$ is the unit vector in the x-direction, and T is a scalar.

Differential calculus

1. Find the gradient of $f(x, y, z)=x^{2} y^{3} z^{4}$

The gradient is

$$
\nabla f(x, y, z)=\frac{\partial f_{x}}{\partial x} \hat{\mathbf{x}}+\frac{\partial f_{y}}{\partial y} \hat{\mathbf{y}}+\frac{\partial f_{z}}{\partial z} \hat{\mathbf{z}}=2 x y^{3} z^{4} \hat{\mathbf{x}}+3 x^{2} y^{2} z^{4} \hat{\mathbf{y}}+4 x^{2} y^{3} z^{3} \hat{\mathbf{z}}
$$

+5 for correct answer, -2 when forgetting vector identity, -1 for minor calculation errors
2. Calculate the divergence of $\mathbf{v}=x y \hat{\mathbf{x}}+2 y z \hat{\mathbf{y}}+3 z x \hat{\mathbf{z}}$

The divergence is

$$
\nabla \cdot \mathbf{v}=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}=y+2 z+3 x
$$

+5 for correct answer, -2 when forgetting vector identity, -1 for minor calculation errors
3. Calculate the curl of $\mathbf{v}=x^{2} \hat{\mathbf{x}}+3 x z^{2} \hat{\mathbf{y}}-2 x z \hat{\mathbf{z}}$

The curl is

$$
\nabla \times \mathbf{v}=\hat{\mathbf{x}}\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right)+\hat{\mathbf{y}}\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right)+\hat{\mathbf{z}}\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right)=-6 x z \hat{\mathbf{x}}+2 z \hat{\mathbf{y}}+3 z^{2} \hat{\mathbf{z}}
$$

+5 for correct answer, -2 when forgetting vector identity, -1 for minor calculation errors
4. Give an example of a two-dimensional vector field with non-zero divergence and zero curl. Provide the formula of the vector field, calculate the divergence and curl, and make a sketch of the field.
A vector field whose magnitude is proportional to the coordinates would be a good example: $\mathbf{F}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}$. For this field, the divergence is $\nabla \cdot \mathbf{F}=2$, and the curl $\nabla \times \mathbf{F}=0$.

+5 for correct answer, +2 for formula, +2 for graph,+1 for divergence and curl calculated
5. Give an example of a two-dimensional vector field with zero divergence and non-zero curl. Provide the formula of the vector field, calculate the divergence and curl, and make a sketch of the field.
We need some rotation in the vector field, for example $\mathbf{F}=-y \hat{\mathbf{x}}+x \hat{\mathbf{y}}$. The curl $\nabla \times \mathbf{F}=2 \hat{\mathbf{z}}$, and the divergence $\nabla \cdot \mathbf{F}=0$.

+5 for correct answer, +2 for formula, +2 for graph, +1 for divergence and curl calculated
6. Calculate the Laplacian $\nabla^{2} T$ of the function $T=\sin (x) \sin (y) \cos (z)$.

Since $\frac{\partial^{2} T}{\partial x^{2}}=\frac{\partial^{2} T}{\partial y^{2}}=\frac{\partial^{2} T}{\partial z^{2}}=-T$ we find that $\nabla^{2} T=-3 T$.
+5 for correct answer, +2 for formula / proper approach
7. Show how to calculate the volume of a sphere of radius R in spherical coordinates.

$$
\begin{aligned}
V & =\int d \tau=\int_{r=0}^{R} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} r^{2} \sin \theta d r d \theta d \phi \\
& =\int_{0}^{R} r^{2} d r \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi \\
& =\frac{R^{3}}{3} 22 \pi=\frac{4}{3} \pi R^{3}
\end{aligned}
$$

+5 correct answer, +2 correct formula, +1 correct boundary, +2 correct execution
8. $\int_{-\infty}^{\infty} x^{3} \delta(3-x) d x=$

For $x=3$ the delta function is non-zero; therefore the answer is $3^{3}=27$.
+5 correct answer, -2 for forgetting cube power
9. Suppose $\mathbf{v}=\frac{2}{r^{2}} \hat{\mathbf{r}}$. The divergence $\boldsymbol{\nabla} \cdot \mathbf{v}=$

The answer is $8 \pi \delta^{3}(\mathbf{r})$
+5 correct answer, -1 for forgetting factor 2,2 for 8π only answer, 0 points for $\nabla \cdot \mathbf{v}=0$
10. Show, using Gauss's law, that the electric field outside a uniformly charged solid sphere of radius R and total charge q is the same as it would have been if all charge had been concentrated at the center.
This can be found using a spherical surface with radius $r>R$ as a Gaussian surface. Since with this surface the electric field \mathbf{E} is always parallel to the surface normals, the dot product from $\int \mathbf{E} \cdot d \mathbf{a}$ can be dropped, and we get $\int|\mathbf{E}| d a=|\mathbf{E}| 4 \pi r^{2}$, which through Gauss's law is equal to the enclosed charge, and we find

$$
\mathbf{E}=\frac{1}{4 \pi \epsilon_{0}} \frac{q}{r^{2}} \hat{\mathbf{r}},
$$

which is just the field of a charge q located at the origin.
+5 correct answer, +3 for gauss's law + correct surface, +2 correct execution, -1 forgetting $\hat{\mathbf{r}}$
11. An infinite plane carries a uniform surface charge σ per unit area . Find its electric field. Use a Gaussian pillbox, to find that $Q_{\text {enc }}=\sigma A$, where A is the area of the lid of the pillbox. By symmetry \mathbf{E} points away from the surface, and we find a contribution from both top and bottom surfaces: $\int \mathbf{E} \cdot d \mathbf{a}=2 A|\mathbf{E}|=\frac{1}{\epsilon}{ }_{0} \sigma A$. We know the direction of the field; it points away from the surface, so

$$
\mathbf{E}=\frac{\sigma}{2 \epsilon_{0}} \hat{\mathbf{n}}
$$

+5 correct answer, +3 gauss's law + correct surface, -1 forgetting $\hat{\mathbf{n}},-1$ forgetting $\frac{1}{2}, 2$ if only answer is given

The End

